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Abstract

Survival analysis is an important part of modern statistics. It refers
to a series of statistical methods used to explore the occurrence time of
events of interest. The common ones are survival time analysis of cancer
patients and failure time analysis in engineering and so on. This paper
aims to introduce the basic theory of survival analysis and conventional
application models, including proportional risk model and accelerated fail-
ure time model. However, in real life, the original model has considerable
limitations. Due to the lack of a variety of data, it is difficult for us to ap-
ply it directly. Therefore, based on this problem, this paper first reviews
the basic research methods and research steps. Then, the semi paramet-
ric accelerated failure time model is studied by using the Expectation-
Maximum method through the maximum likelihood method and Newton
method. Then, a new research method is proposed by using Gehan-weight
function and convex function, and the theoretical research from semi para-
metric AFT model to AFT mixture cure model is completed

Key words: Linear regression, Maximum likelihood method, EM
method , AFT model

摘摘摘要要要

生存分析是现代统计学的重要组成部分，指的是一系列用来探究所感

兴趣的事件的发生的时间的统计方法。常见的有癌症患者生存时间分析和

工程中的失败时间分析等等。本文旨在通过对多篇研究论文的贡献和挑战

的研究，初步介绍了生存分析的基本理论以及常规应用模型，包括比例风

险模型和加速失效时间模型。然而，在现实生活中，原始的模型具有相当

大的局限性，由于多种数据的缺失，我们很难直接应用。因此，基于此问

题，本文先回顾了生物统计的基本研究方法和研究步骤。然后通过最大似

然法和牛顿方法来实现期望最大化算法，着重研究了半参数加速失效时间

模型。之后，通过应用格汉权函数和凸函数提出了一种新的研究方法，完

成了从半参数加速失效时间模型到半参数加速失效时间混合固化模型的拓

展的理论研究

关关关键键键词词词：线性回归，最大似然法，EM算法，AFT模型
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1 Introduction

We are interested to study how risk factors associated with disease exist or not
exist in logistic regression. Sometimes, we look for the treatment of risk factors or
interested in how to influence the time or other incidents of disease. Meanwhile,
we might have to have study dropout, so we are not sure whether they will suffer
from diseases of the subjects. In these cases, the logistic regression is inappropriate.

To begin with, survival analysis is applied to the analysis of the incident before
the time the data of interest. Tolley, Barnes & Freeman (2016) claimed that sur-
vival analysis is analyzing the data according to time of one of the main statistical
methods. Such data analysis is very important to many aspects, including the
estimate loss of life years, evaluate drug safety, measurement of medical treatment
and the feasibility of the device, an actuarial loss, product reliability, etc. This
experience science branch needs to collect and analyze data, until a failure or death.

It is usually determined that loss or damage is what the survival analysis needs
to solve. "How long can the patient live? "Or "How much has the victim’s life
shortened?" are common questions. However, an accurate answer is impossible for
any question. We can only get an objective answer as a statistical probability. It
requires an average or “expected value” with a relevant uncertainty level. Usually,
we illustrate this level of uncertainty by using confidence intervals.

How to obtain more information from data is the goal that statistics has been
pursuing tirelessly. However, many times, it is a bit regrettable to delete some
data, and it is inaccurate to leave it. In fact, this kind of data that does not
contain the exact value of the data and only contains its upper or lower bound
is called Censored Data. The main goal of survival analysis is to deal with the
situation where the corresponding variable is censored data.

Censored data is very common in daily life, for example: a member of the test with-
draws from the experiment during the experiment; some samples are incorrectly
measured due to the inaccuracy of the instrument; the questionnaire is distorted
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due to social reasons, etc. These data can all be viewed as censored cases. Survival
analysis is the most powerful way to deal with this situation.

In the data of survival analysis studies, the response variable is censored, which
is common and unavoidable. Therefore, the traditional mean, standard deviation,
and related t tests cannot be used. Survival analysis focuses on two questions. One
is to identify differences between groups. The main methods used are Kaplan-Meier
estimation, Log-Rank test, and regression. The second is to make predictions. The
main method used is regression, including parametric models and semi-parametric
models.

2 Literature Review

2.1 Basic concepts

First of all, what exactly is survival analysis? Goel, Khanna & Kishore (2010)
proposed that survival analysis is a collection of statistical procedures for data
analysis. Among them, the outcome variable is the time before the event and
the outcome variable of interest is the time before the event. In survival analysis,
we take the time variable as survival time, and usually define the event as failure
(Deborah et al. 2021). Most of the time here refers to days months, years or from
the start of the follow-up of the individual to the occurrence of the event. Alter-
natively, time can also refer to the age of the individual at the time of the event.
The event here may be death, onset of illness, remission, recovery or any specified
experience of interest that may occur to the individual.

However, in many cases, we cannot know exactly when the event occurred, so
we need to introduce a new concept, namely censoring data. Censorship means
that we have some information about the survival time of an individual, but we
don’t know exactly the survival time (Goel, Khanna & Kishore 2010). The cen-
sored may occur due to the following three reasons: no events experienced before
the end of the study; lost to follow-up during the study; withdrawal from the study
due to death (if the death is not an event of interest) or other reasons. In addition,
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the review can be clearly divided into three types. Right-censoring was defined
as a situation where the observed survival time was less than or equal to the true
survival time. The opposite is left-censored, where the observed survival time is
greater than or equal to the true survival time. There is also a case of interval
censoring, which means that the known time interval contains the true survival
time.

Next, we need to identify terms and symbols to facilitate future model under-
standing. First, T is a random variable of survival time, and t is any particular
interest value of the random variable capital T. Secondly, d is a (0,1) random
variable used to indicate failure or review. When d=1, the event occurred during
the study period, which means failure; if the survival time is censored at the end
of the study period, d=0. At the same time, here we need to introduce the defi-
nitions of two basic functions, the survival function S(t) and the hazard function
h(t). The survivor function refers to the probability that a individual will survive
beyond a specified time t. The hazard function describes the instantaneous po-
tential of an event per unit time, assuming the individual has survived until time t..

Also, there are several relationships in the above terminology and notation. On
the one hand, survivor function gives the probability that the random variable T
exceeds the specified time t, which can be expressed as S(t) = P (T > t).

Figure 1: Theoretical S(t) Figure 2: Ŝ(t)inpractice

On the other hand, as for S(t) and h(t), knowing one can determine the other.
Their conversion formulas are: S(t) = e−

∫ t
0 h(u) du and h(t) = −dS(t)/dt

S(t)
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2.2 Cox proportional hazards (PH) model

Goel et al. (2010) claimed that Kaplan-Meier estimation is the easiest way to cal-
culate survival rates over a period of time. Various situations can be assumed to
create a survival curve that involves calculating the probability of events occurring
at a certain point in time and combining these consecutives. Multiply the proba-
bility by any previously calculated probability to obtain the final estimate.

However, the Kaplan-Meier survival estimation method is univariate analysis,
which means model only describes the relationship between a single variable and
survival, without considering or ignoring the impact of other variables. But in
real life, we need to consider multiple variables. For example, when comparing the
survival rates of two groups of patients with different genders, the patients in one
group are older. Therefore, the survival rate may be affected by gender or age.
This is why we need to introduce the Cox proportional hazards regression model
next.

The Cox proportional hazard model supposes that the potential hazard rate is
a function of the independent variables (and covariates). It is essentially a com-
monly used statistical regression model for investigating the association between
a patient’s survival time and one or more predictors(Cox 1972). The model is
expressed as follows:

h(t,X) = h0(t)× exp
∑p

i=1
Xiβi; X = (X1, X2, ...XP ) (1)

Among them, h0(t) is called the hazard function, that is, the probability of the
event of interest occurring at time t, assuming that the subject survives at time t
and beyond. The term h0(t) is called the baseline risk; when all independent vari-
able valus are zero, it is the risk of each individual. The terms X1, X2, X3, ...Xk are
covariates, and β1, β2, ...βkare the corresponding regression coefficients Deborah,
Derek and Bruce, 2021).

The model gives an individual risk expression at time t, which contains a set

6



Final Year Project

of given specifications of explanatory variables denoted by X. That is, the X indi-
cates that a set of predictor variables (sometimes called a vector) is being modeled
to predict the individual’s risk.

Additionally, the baseline risk h0(t) is an important feature of the Cox model. It is
an unspecified function, and this feature makes the Cox model a semi-parametric
model. A model whose function form is fully specified is called a parametric model,
except for the values of unknown parameters.

For instance, the Weibull hazard model is a parametric model with the follow-
ing form, where the unknown parameters are λ, p, and βi.

Weibull : h(t,X) = λptp−1 (2)

where λ = exp
∑p

i=1Xiβi and h0(t) = ptp−1

However, how can we apply Cox PH model into Survival Curves?
When using the Cox model to fit survival data, we can get a survival curve, which
is called an adjusted survival curve. It can be adjusted for explanatory variables
used as predictors. The hazard function formula of the model can be converted to
the corresponding survival function formula as shown below.

Cox model survival function : S(t,X) = S0(t)exp

p∑
i=1

Xiβi (3)

Estimated survival function : Ŝ = Ŝ0(t)exp

p∑
i=1

Xiβ̂i (4)

The survival function formula is the basis for determining the adjusted survival
curve. Ŝ0(t) and β̂i ca provided by the computer program. The Xi are specified
by the investigator.
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2.3 Accelerated failure time (AFT) model

For the AFT and PH models, the interpretation of the parameters is different.
The AFT assumption is suitable for the comparison of survival time, and the PH
value hypothesis is suitable for the comparison of hazards(Fu, Yang, Zhou & Wang
2021). To put it succinctly, AFT is the multiplicative effect of survival time, and
PH is the multiplicative effect of hazard. Now we discuss the AFT assumption.
We already know that the basic assumption of the AFT model is that the influence
of the covariate is multiplied by the survival time (proportional). For a random
event time T, an AFT model proposes the following relationship between covariates
and Y = logT :

Yi = Xiβ +Wi (5)

Where Wi ∼ f are the error, or residual, terms. The above framework describes
a class of general models: the distribution we specify for W allows us to obtain
different models, but all models actually have the same structure. For instance,
a basic possibility is to assume Wi ∼ N(0, σi). If it is assumed that Y obeys a
normal distribution, from the formula Y = logT , it can be inferred that T obeys
a logarithmic normal distribution. Therefore, Therefore, we can fit the model
and obtain the confidence interval by using the ordinary least squares regression
method. For any AFT, we have T = eηT0, where T0 = eW and ηi = Xiβ. In
other words, the objects of the two models are different. As for the proportional
hazard (PH) model, the covariate acts on the risk by multiplication, while in the
AFT model, the covariate acts on the time by multiplication. Also,

Survival function : Si(t) = S0[exp(−βit)] (6)

Hazard function : λi(t) = λ0[exp(−ηit)]exp(−ηit) (7)

It’s worth mentioning that Weibull returns to satisfy both AFT and PH. Since
it is a linear distribution, the vertical movement of the line will correspond to
the horizontal movement(Cox 1972). According to the extreme value distribution,
λ(y) = ey, which is linear on this scale. In addition, the Weibull distribution
represents its series of positional scales. Therefore, the Weibull distribution is the
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only distribution that satisfies both PH and AFT assumptions. Finally, let us
briefly consider Maximum likelihood estimation, the likelihood is:

L(β, σ|y, d) =
∏
i

σ−1f(wi)
diS(wi)

1−di =
∏
i

σ−1λ(wi)
diS(wi) (8)

where f represents the density, λ and S represent hazard and survival functions
respectively for the error distribution. wi = (yi −Xiβ)/σ.

3 Methodology Analysis

The classic models for analyzing failure time data, including the Cox proportional
hazard model and accelerated failure time model, we have already introduced.
Now we want to apply it to medical research. However, In the real problem we
find that because of the limitation of the AFT estimation method, it is difficult
for us to solve the problem directly. Therefore, our purpose is to develop a new
estimation method for the AFT model. First, we introduce the EM method which
be used to optimize and solve the problem.

3.1 EM method

3.1.1 Introduction of EM method

The EM method, also known as the expectation maximization method, is the most
common latent variable estimation method and is used in machine learning widely
(Kolaczyk 2009). For instance, it is often used to learn Gaussian mixture models,
hidden Markov algorithms, etc. In this paper, the principle of EM method is sum-
marized in detail.

The EM algorithm is an iterative optimization strategy. For each iteration in
its calculation method, it can be divided into two steps, the expected step size (E-
step) and the maximum step size (M-step). It was originally designed to solve the
problem of how to estimate parameters in the case of missing data . Its algorithmic
basis and convergence effectiveness have been discussed by mathematicians, and
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the basic idea is iteration. First, the values of the model parameters are estimated
from the known observed data. The values for the missing data portion are then
estimated based on the parameter values just estimated. Add the estimated miss-
ing data to the value of the previously estimated missing data. The new parameter
values are re-estimated using the observed data, and the iteration is repeated until
it finally converges and the iteration ends.

3.1.2 Preliminary knowledge

3.1.2.1 Maximum likelihood estimation
"Likelihood" and "probability" are similar in meaning, both refer to the possibility
of a certain event, but in statistics, "likelihood" and "probability" (probability)
have a clear distinction(Efron & Stein 2007): Probability, which is used to predict
the result of the next observation given some parameters; Likelihood is used to
estimate parameters about the properties of things when the results obtained from
some observations are known. In this sense, the likelihood function can be under-
stood as the inverse of the conditional probability. Given a certain parameter B,
the probability that event A will occur is written as:P (A|B) = P (A,B)

P (B)
Using Bayes’

theorem,P (B|A) = P (A|B)P (B)
P (A)

Therefore, we can construct a method for expressing
the likelihood in reverse: given that an event A has occurred, using the likelihood
function L(B|A), we estimate the likelihood of the parameter B. Formally, the
likelihood function is also a conditional probability function, but the variable we
care about is changed: b 7→ P (A|B = b). Note that the likelihood function is not
required to be normalized here:

∑
b∈B P (A|B = b) = 1. A likelihood function

multiplied by a positive constant is still a likelihood function. For all α > 0, there
can be a likelihood function:L(b|A) = αP (A|B = b)

So, why do we want to estimate the likelihood of a parameter? Back to the
definition, the purpose is to estimate the parameter theta, not to find the simi-
larity What is the value of probability. The same result can correspond to many
different parameters theta, and the probability of each parameter is different, that
is, each parameter θ has a corresponding likelihood L(θ). Maximum likelihood es-
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timation, a method used to estimate the parameters of a probabilistic model, is
the original and most natural application of the likelihood function. The method
of maximum likelihood estimation is to first select a likelihood function (usually
a probability density function or a probability mass function), and then find the
maximum point after sorting.

3.1.2.2 Jensen’s inequality
First, let’s understand what a convex function is. Fygenson & Ritov (1994) men-
tioned that a convex function is a real-valued function f defined on a convex subset
C (interval) of a vector space, if any two points x1, x2, 0 ≤ t ≤ 1 on its domain C
have

tf(x1) + (1− t)f(x2) ≥ f(tx1 + (1− t)x2) (9)

Figure 3: Convex Function

That is to say, the secant of any two
points of a convex function is above
the function graph, which is also the
two-point form of Jensen’s inequality.
The Left is an example.(f(x)=lnx and
f(x)= 0.3x)

If for any set of points xi, if λi ≥ 0 and
∑

i λi = 1 , using mathematical induction,
it can be proved that the convex function f (x) satisfies:

f(
∑
i

λixi) ≤
∑
i

λif(xi) (10)

Equation (10) is called Jensen’s inequality, which is a generalized form of Equation
(9). If f is a convex function, where E(x) represents the mathematical expectation
of x. x is a random variable, then we can get E[f(x)] ≥ f(E[x]) . This formula
takes the equal sign if and only if x is a constant.
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3.1.3 EM algorithm

Our goal is to maximize a likelihood function as following:

θMLE = argmaxθP (X|θ) (11)

Here θ is the model parameter, and X is the observable data, but P (X|θ) may be
more complicated, we can split P (X|θ) into two parts:

P (X|θ) =
∑
z

P (Z|θ)P (X|θ, Z) (12)

Here Z is an latent variable defined by us, which cannot be directly observed. The
above equation is equivalent to a full-probability expansion of P (X|θ). Our loss
function is generally The logarithm of the likelihood function, as follows:

L(θ) = logP (X|θ) = log(
∑
Z

P (Z|θ)P (X|θ, Z)) (13)

Next, it will be very difficult to solve by directly taking the partial derivative of
the parameter and making it 0, which is the difficulty of solving the maximum
likelihood estimation with latent variables.
The idea of solving EM is to find a sequence of parameters that can gradually
improve the likelihood estimate, namely:

θ1 > θ2 > · · · > θi → L(θ1) < L(θ2) < · · · < L(θi)

If the current round is the i-th round and the current parameter is θi, then the
next step is to find a θi+1 on this basis such that L(θi+1) > L(θi) According to the
conditional probability formula, we can transform P (X|θ) as follows: P (X|θ) =
P (X,Z|θ)
P (Z|X,θ)

so:
L(θ) = logP (X|θ) = logP (X,Z|θ)− logP (Z|X, θ) (14)

So, how to use the information of the previous step θi+1? Since we learned θi

in the previous step, then we can find a distribution of Z on this basis, that is,
P (Z|X, θi), so we can find The expectation of L(θ) on the distribution P (Z|X, θi):

12
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Z logP (X|θ)P (Z|X, θi) =

∑
Z logP (X,Z|θ)P (Z|X, θi)−

∑
Z logP (Z|X, θ)P (Z|X, θi)

→ logP (X|θ) =
∑

Z logP (X,Z|θ)P (Z|X, θi)−
∑

Z logP (Z|X, θ)P (Z|X, θi)

→ L(θ) =
∑

Z logP (X,Z|θ)P (Z|X, θi)−
∑

Z logP (Z|X, θ)P (Z|X, θi)

→ L(θ) = Q(θ, θi)−H(θ, θi)

The last step is:

Q(θ, θi) =
∑

Z logP (X|Z, θ)P (Z|X, θi)

H(θ, θi) =
∑

Z logP (Z|X, θ)P (Z|X, θi)

Another point to note is that θ is an unknown quantity, and θi is a known quantity.
At this point, we can already see the direction of the next optimization, namely:

θi+1 = argmaxθQ(θ, θi)−H(θ, θi)

However, only the maximum value of the Q function is solved in the actual solution:

θi = argmaxθQ(θ, θi)

This is because there must be H(θi+1, θi) ≤ H(θi, θi) for the H function, so
L(θi+1) ≥ L(θi), proof is below

13



Final Year Project

3.1.4 EM Convergence Proof

H(θi+1, θi)−H(θi, θi) =
∑
Z

(log
P (Z|X, θi+1

P (Z|X, θi)
)P (Z|X, θi)

≤ log(
∑
Z

P (Z|X, θi+1)

P (Z|X, θi)
P (Z|X, θi))

= log(
∑
Z

P (Z|X, θi)) = log1 = 0

Jensen’s inequality is used, which can be obtained from the definition of the
convex function. log(x) is a convex function, and the above xi is regarded as
P (Zi|X, θi+1)P (Zi|X, θi), λi can be proved as P (Zi|X, θi).

3.1.5 ELBO and KL

The purpose of the expectation-maximization algorithm is to solve the parameter
estimation of a mixed model with latent variables (maximum likelihood estima-
tion. MLE estimates the parameter of P (x|θ) as: θMLE = argmaxθP (X|θ). The
algorithmic solution to this problem is an iterative approach:

θt+1 = argmaxθ

∫
Z

logP (X|θ)P (Z|X, θt)

This formula consists of two steps of iteration:

E-step: Calculate the expectation of logP (X|θ) under the probability distribu-
tion P (Z|X, θt)

M-step: Calculate the parameters that maximize this expectation to get the input
for the next EM step Prove: logP (X|θt) ≤ logP (X|θt+1)

Proof:
logP (X|θ) = logP (Z,X|θ)− logP (Z|X, θ), integrate the left and right sides:

Left:

14
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z
P (Z|X, θt)logP (X|θ)dz = logP (x|θ)

Right:∫
z
P (Z|X, θt)logP (X,Z|θ)dz −

∫
z
P (Z|X, θt)logP (Z|X, θ)dz = Q(θ, θt)−H(θ, θt)

Therefore:

logP (x|θ) = Q(θ, θt)−H(θ, θt)

Since

Q(θ, θt) =
∫
z
P (Z|X, θt)logp(x, z|θ)dz

and

θt+1 = argmax
θ

∫
z
log[P (X,Z|θ)]P (Z|X, θt)dz

so

Q(θt+1, θt) ≥ Q(θt, θt)

To prove logP (X|θt) ≤ logP (X|θt+1), we need to prove:

H(θt, θt) ≥ H(θt+1, θt)

H(θt+1, θt)−H(θt, θt) =

∫
z

P (Z|X, θt) logP (Z|X, θt+1)dz −
∫
z

P (Z|X, θt) logP (Z|X, θt)dz

=

∫
z

P (Z|X, θt) log
P (Z|X, θt+1)

P (Z|X, θt)

= −KL(P (Z|X, θt), P (Z|X, θt+1)) ≤ 0

Above all:

logP (X|θt) ≤ logP (X|θt+1)

From the proof above, we would see that the likelihood function increases at each
step. Then, let’s see how the formula in the EM iteration process comes from:

logP (X|θ) = logP (Z,X|θ)− logP (Z|X, θ) = log
p(z, x|θ)
q(z)

− log
P (Z|X, θ)

q(z)
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Find the expectation on both sides Eq(z):

Left: ∫
z

q(z) log p(x|θ)dz = log p(x|θ)

Right:∫
z

q(z) log
p(z, x|θ)
q(z)

dz −
∫
z

q(z) log
p(z|x, θ)
q(z)

dz = ELBO +KL(q(z), p(z|x, θ))

In the above formula, Evidence Lower Bound(ELBO), is a lower bound , so
log p(x|θ) ≥ ELBO, the equal sign is taken when the KL divergence is 0, that
is: q(z) = p(z|x, θ), the EM algorithm The purpose is to maximize ELBO.

According to the above proof process, after each step of EM, the largest ELBO is
obtained, and the parameter that maximizes ELBO is substituted into the next
step:

θ̂ = argmaxθELBO = argmaxθ

∫
z

q(z) log
p(x, z|θ)
q(z)

dz

Since q(z) = p(z|x, θt), the maximum value of this step can take the equal sign,

θ̂ = argmaxθELBO = argmaxθ

∫
z

q(z)log
P (X,Z|θ)

q(z)
dz

= argmaxθ

∫
z

P (Z|X, θt)(log
P (X,Z|θ)
P (Z|X, θt)

)dz

= argmaxθ

∫
z

P (Z|X, θt)logP (X,Z|θ)

This formula is the above Equation during EM iteration. Starting from Jensen’s
inequality, this formula can also be derived, which we proved in 3.1.2

3.1.6 Generalized EM

The EM model solves the problem of parameter estimation of the probabilistic
generation model. It learns θ by introducing the latent variable z, and the specific
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model has different assumptions about z. For the learning task P (X|θ), it is the
learning task P (X,Z|θ)

P (Z|X,θ)
. In this formula, we assume that in step E, q(z) = p(z|x, θ),

but if this P (Z|X, θ) cannot be solved, it must be Use methods such as sampling
(MCMC) or variational inference to approximate this posterior. We observe the
expression of KL divergence, in order to maximize ELBO, we need to minimize
KL divergence at a fixed θ, so:

q̂(z) = argmin
q

KL(p, q) = argmax
q

ELBO

This is the basic idea of generalized EM:

E-step:

q̂t+1(z) = argmax
q

∫
z

qt(z) log
p(x, z|θ)
qt(z)

dz, fixed θ

M-step:

θ̂ = argmax
θ

∫
z

qt+1(z) log
p(x, z|θ)
qt+1(z)

dz, fixed q̂

For the above integral:

ELBO =

∫
z

q(z) log
p(x, z|θ)
q(z)

dz = Eq(z)[p(x, z|θ)] + Entropy(q(z))

Therefore, we see that generalized EM is equivalent to adding the term entropy to
the original formula.
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3.2 Newton–Raphson algorithm

The Newton-Raphson algorithm, referred to as Newton’s method, is one of the
most famous one-dimensional root-finding methods(Deisenroth et al. 2020). Its
characteristic is that the function value and its first derivative value need to be
calculated at the same time(Hussein 2011). From a geometrical interpretation,
Newton’s method is to extend the tangent at the current point to make it inter-
sect with the horizontal axis, and then use the value at the intersection as the next
estimate point.

Newton’s method is to let x descend
in the direction of the gradient of f(x),
similar to the gradient descent method
in the optimization method. The Left
is an example.

Newton’s method can be obtained from the Taylor expansion of the function. The
Taylor expansion of f(x) can be expressed as:

f(x+ δ) = f(x) + f ′(x)δ + f ′′(x)2δ2 +O(δ3)

For a sufficiently small δ, only the first-order terms on the right-hand side of the
above equation can be kept:

δ =
−f(x)

f ′(x)

Then
xi + 1 = xiδ = xi− −f(xi)

f ′(xi)
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Compared with the bisection method and the truncated chord method, the ad-
vantage of Newton’s method is that the convergence speed could reach the second
order, and there is no iteration near the root, and the effective number of the
result can be almost doubled. Of course, Newton’s method may also fail, such as
converging to a local extreme value whose tangent direction is horizontal to the
horizontal axis, so that the next iteration value cannot be calculated. In addition,
the implementation of Newton’s method requires the user to provide a function to
calculate the function value f(x) and its first derivative value f ′(x), so it is more
suitable for the situation where the derivative of the function can be obtained an-
alytically. Then the convergence speed and accuracy of Newton’s method will be
affected.

3.3 Semi-parametric Model

3.3.1 Parametric model

Before introducing the semi-parametric moedel, let’s take a look at the parametric
Model. ℓ stands for log likelihood, L stands for likelihood. take the Cox model as
an example, to estimate h0(t) together with Xiβi, using hazard function f(ti|x)
and survival function S(ti;x) to estimate, according to Kleinbaum & Klein (1996)
the corresponding likelihood function that needs to be optimized is:

ΘMLE = argmaxΘL(Θ) =
∏

f(ti|x)δiS(ti|x)1−δi

This likelihood function is to model the likelihood estimation of all the information.
When we use it, we actually use ti, i = 1 · · · , n, the information at all time points.
It includes the order relationship of death time and The time point when the
specific s died, so we estimated both the time function h(t) and β

3.3.2 Introduction of semi-parametric Model

The PH Model and the AFT Model are exponential models of Hazard and Time,
respectively(Chen & Ren 2020). However, parametric models mostly rely on strong
assumptions. For example, assumptions about the baseline Hazard formula in the
PH Model and assumptions about the residual formula in the AFT Model. When
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the assumptions are not satisfied, the model generally fits poorly. Therefore, we
introduce a semi-parametric model: Semi-parametric AFT Model, which is also
known as Rank Regression

First, what is a semi-parametric model? Since the parametric model has high
requirements for model assumptions, it is not robust enough. Therefore, we hope
that the model assumptions can be appropriately reduced. Meanwhile, if we want
to be able to preserve part of the interpret-ability of the model, we need to preserve
the parameters appropriately. This is why it is called a semi-parametric model.

For instance, for a normal AFT model, Yi = Xiβ + Wi , Wi ∼ f . If we want
to apply the AFT model, we need to first assume that the residuals W follow a
certain distribution, and then solve it using iterations. However, if we keep the
parameters β, but relax our assumptions about the distribution of the residuals
W (assuming that the residuals follow some distribution that is unknown). Then,
this is a semi-parametric model. Set another example, as for the normal pH model,
hi(t) = h0(t)exp(Xiβ), if we want to apply the PH model, we need to assume h0(t).
However, if our assumptions are not true, the model performance will generally
be unsatisfactory. Therefore, we keep the parameter β, but relax the assumptions
about the base hazard function h0. The above is also a semi-parametric model.

In conclusion, in survival analysis, we always keep the linear parametric part for
the parametric part, i.e. the way the covariates affect the distribution. Relax
the assumptions about the survival distribution, that is, the non-parametric part,
relax the specific assumptions about the survival distribution, and keep only the
basic form.

3.3.3 Application of semi-parametric Model

The full parameter model relies too much on the assumptions about the specific
functional form of h(t) and eXβ, we now choose to estimate only h(t) or only the
parameters of eXβ, that is, a part is regarded as MLE The non-parameter part
that cannot be processed, one is the parameter part. Such a compromise method
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is called the semi-parameter method. Generally, we can’t guess the baseline risk
rate

However, we prefer to study the effect of covariates on the risk rate, so we use
the semi-parametric method to estimate only β, Again, we take Cox model as an
example, and the constructed likelihood function that needs to be optimized is:

β̂MLE = argmaxβ

n∏
i

hi(ti, xi)∑n
j=1 hj(tj, xj)

= argmaxβ

n∏
i

e
∑n

i Xiβ∑n
j=1 e

∑n
j Xjβ

(15)

This likelihood function is called partial likelihood. It does not use all the death
time information, but only uses the order of the death time of different people, that
is, only the order relationship of t1 ≤ · · · tn is used. Among them, hi(ti,xi)∑n

j=1 hj(tj ,xj)

represents the probability that we have n-i-11 people left, and now it is the i-th
person’s turn to die. Since we only use the ordinal relationship to construct the
likelihood, we cannot estimate the time function baseline risk function h0(t) with-
out time point data, but it is enough to estimate β, so it seems that we are missing
more data information, but compared to the hard-to-guess the huge negative im-
pact of the shape of h0 on the estimate, it may be better to lose point information
to estimate β The partial likelihood function is not a real likelihood, because the
distributions corresponding to all events are not continuously multiplied, but only
for the In this case, we only care about the multiplicative probability correspond-
ing to the order relationship, but Cox proved that this likelihood function and
its estimator satisfy most of the properties satisfied by the ordinary likelihood
function L
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3.4 Rank Statistics

The event-rank statistic is a commonly used concept in mathematical statistics
(Efron & Stein 2007). Its advantage lies in the weak assumption about the distri-
bution of the random variable, which is very suitable for our current requirements.

First, we define: y(i) is the ith largest corresponding variable after sorting; x(i)

is the corresponding explanatory variable. Then Rank Statistics can be expressed
as

∑
i(i− x̄)(x(i)− x̄)

where (i − ī) represents statistics for y. Since we have no distribution assump-
tions about y, its actual value is not important, but its relative position i is what
we import. The (x(i) − x̄) represents the statistics of x. The whole represents
whether the position of y is regular with respect to the value of x. If x and y

are in a perfectly positive relationship, this statistic should achieve a large value.
Therefore, the rank statistic shows the correlation between x and y. When the
rank statistic is 0, it can be considered that there is no correlation between x and y.

Then, given a set of parameters {βj}Kj=1, we can test the rank statistic of yi−Xiβ
j

versus xi . If the rank statistic is close to 0, it means that we have extracted
enough information xi. At the same time, since the rank statistic has asymptotic
normality, it can be tested to determine whether the model is significant compared
to β = 0

We consider the case that x is one-dimensional, and the multi-dimensional case
can be directly obtained in a similar way. First, we give the first null hypothesis
and alternative hypothesis. This test is mainly aimed at whether the model is
significant:

H0 : β = 0 or H1 : β ̸= 0

Then, U =
∑

j(x(j) − x̄(j))is the corresponding rank statistic. Among them, x(j)

represents the individuals who died at the time point t(j), and x̄(j) represents the
individuals who were still alive at the time point t(j).
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Why is this a rank statistic? First of all, the information of y is implicit in the
time point t(j). Since the individual x(j) at each time point t(j) is the first place in
the order, it does not need to be multiplied by (i− (̄i)). If the null hypothesis holds
i.e. β = 0, then there should be no information about y in x, and the deaths of
individuals should be random and in no predetermined order. However, in reality
we do observe a set of orders of individual deaths, so this statistic tests whether
the order of individual deaths is indeed independent of the explanatory variable x.

Therefore, if the null hypothesis holds, we can calculate the variance V =
∑

j(x(j)−
x̄(j))

2 of the rank statistic U, and then use U2

V
∼ χ2 to test it.

Further, we can give a second hypothesis test:

H0 : β = β0 or H1 : β ̸= β0

Similar to the above method, U =
∑

j(x(j) − x̄(j)) is also used as the rank
statistic. It’s just that our sorting is no longer by time of death tj, but by
Wi = Yi−Xiβ0 = log(ti)−Xiβ . The meaning of this test is to check whether the
residuals also contain information about the explanatory variable x(j). Further, we
can use the same method as above to check. Of course, we have reason to believe
that the smaller the chi-square value corresponds the less the information of the
Xiβ in the residuals.

However, the above method can only choose from a set of parameters {β}, there
is no way to directly obtain the optimal β̂. It cannot be solved using iteration,
nor using Wald to make confidence intervals. Therefore, in practical applications,
rank-based estimation is very limited.
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4 Estimation

According to Zhang & Peng (2009), we call the subjects who have never experi-
enced the event as cured subjects (not susceptible). The remaining subjects that
uncured are susceptible. T represents the failure time of interest, and the survival
function of T is S(t|x, z). x and z are the observed values of the two covariate
vectors. Therefore, the mixture cure model can be written as:

S(t|x, z) = π(z)S(t|x) + 1− π(z) (16)

Where π(z) denotes the probability that the patient is not cured, which depends on
z. the survival function of the failure time distribution of uncured patientsS(t|x)
is , which depends on x. "Incidence" refer to the π(z) model, and "delay" refer to
the S(t|x) model.
Applied into Semi-parametric AFT mixture cure model we can get the incidence
component is:

π(z) =
e(bz)

1 + e(bz)

where b represents unknown parameters (a row vector). 1−π(z) is the proportion
of cured patients. From (5) we can get the latency component function:

log(T ) = βx+ ε

S is the corresponding survival function. Given that the patient is not cured, the
conditional survival function of T is S(log(t) − βx). If we let (ti, δi, zi, xi)denote
the observed data of the i-th individual i = 1, 2, . . . n. And here ti is the observed
survival time of the i−th patient. δi is the censored index, into detail, δi = 1 means
uncensored time, δi = 0 means censored time. zi and xi are possible covariates.
Using O = (ti, δi, zi, xi)i = 1, 2, . . . , n to represent the observed data, since the
censoring is independent, applied into (8), from i− th patient, the contribution to
the likelihood is:

π(zi)f(log(ti)− βXi)/ti when δi = 1 (17)

1− π(zi) + π(zi)S(log(ti)− βXi) when δi = 0 (18)

24



Final Year Project

In order to put it together, we write the observed likelihood function as following:

L(b, β, S(·);O) ∝
n∏
i

[π(zi)f(log(ti)− βXi)]
δi [1− π(zi)+ π(zi)S(log(ti)− βXi)]

1−δi

Generally, we can directly maximize L(b, β, S(·);O). However, due to the lack of
f(·) and S(·), it does not fit the semiparametric AFT mixture cure model any more.

Therefore, we need to find another method to solve the problem, which is ex-
act EM method. To estimate unknown parameters(b, β) and the survival function
S(·) in the AFT model, we define yi be a latent random variable:

yi = 1 if the ith individual is not cured

yi = 0 if the ith individual is cured

Compared with the definition of δi before(equation(17)(18)), we can find that

yi = 1 if δi = 1

yi is unknown if δi = 0

Then, we try to write the complete likelihood function:

Lc(b, β, S(·);O, y) = Lc1(b;O.y) · Lc2(β, S(·);O, y)

where

Lc1(b;O, y) =
n∏

i=1

[π(zi)]
yi [1− π(zi)]

1−yi

Lc2(β, S(·);O, y) =
n∏

i=1

[h(log(ti)− βxi)]
yiδi [S(log(ti)− βxi)]

yi

To make estimation easier, we change them into complete log likelihood

lc(b, β, S(·);O, y) = lc1(b;O.y) + lc2(β, S(·);O, y)
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where

lc1(b;O, y) =
n∑

i=1

yilog[π(zi)] + (1− yi)log[1− π(zi)] (19)

lc2(β, S(·);O, y) =
n∑

i=1

yiδilog[h(log(ti)− βxi)] + yilog[S(log(ti)− βxi)] (20)

Here h(·) is the hazard function of ε and h(·) = f(·)/S(·). We can find that after
changing likelihood function into log, the latent random variable yi become linear,
which benefit to our following estimation.

The basic idea of the EM method we have mentioned in 3.1. In this problem, given
the current estimates Θ(m) = {b(m), β(m), S(m)(t)} and observed data O.

The E-step computes the conditional expectation of the full log-likelihood of the
latent variable yi, i = 1, 2, 3 · · ·n. E(yi|Θ(m), O) is the conditional probability
that the ith individual is still not cured in the mth iteration of the algorithm

E(yi|Θ(m), O) = δi + (1− δi)
π(zi)S(log(ti)− βxi)

1− π(zi) + π(zi)S(log(ti)− βxi)
|(Θ(m),O) (21)

E(lc|Θ(m), O) = lc1(b) + lc2(β, S(·)) (22)

we denote E(yi|Θ(m) as w
(m)
i . According to equation(19)(20), we would get the

following:

lc1(b) =
n∑

i=1

w
(m)
i log[π(zi)] + (1− w

(m)
i )log[1− π(zi)] (23)

lc2(β, S(·)) =
n∑

i=1

w
(m)
i δilog[h(log(ti)− βxi)] + w

(m)
i log[S(log(ti)− βxi)] (24)

The M-step is to maximize (23)(24), we see that b, β and S(·) are unknown. For
b, we can use the Newton–Raphson algorithm that mentioned before to maximize
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(23). However, since the survival function S(·) is not a fixed function, it is difficult
for us to achieve the maximization task of β and S(·).

Therefore, we came up with an alternative method to convert the semi-parametric
AFT mixture curing model to the log-likelihood function of the standard semi-
parametric AFT model, excluding constant w

(m)
i ≡ 1. Also, δilogw

(m)
i ≡ 0 and

δiw
(m)
i ≡ δi, we now would rewrite equation(26) as following:

lc2(β, S(·)) =
n∑

i=1

δilog[w
(m)
i h(log(ti)− βxi)] + w

(m)
i log[S(log(ti)− βxi)] (25)

Then take the anti-log of (25), we can get:

Lc2(β, S(·)) =
n∏
i

[w
(m)
i h(log(ti)− βxi)]

δi [S(h(log(ti)− βxi))]
w

(m)
i

=
n∏
i

[w
(m)
i h(log(ti)− βxi)]

δi [S(h(log(ti)− βxi))
w

(m)
i ]

According to:

Hazard function: w
(m)
i h(log(ti)− βxi)

Survival function: S(log(ti)− βxi)
w

(m)
i

We can take (25) as log likelihood function of the AFT model. log(Ti) = βxi + ε∗

where w
(m)
i h(ε∗) is the hazard function of ε∗. We are now able to estimate β in

M-step based on the method of the semi-parametric AFT model.

Next, we continue to apply the partial likelihood principle rank estimation method
to consider the usual PH model with regression coefficients ξ

ĥ(ε∗i ) = w
(m)
i h(ε∗i )e

ξx (26)

We can see that when the coefficient ξ = 0, this formula perfectly satisfies the risk
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function in the AFT model.

Therefore, our general idea is as following:
First, assume that we don’t know ξ. Then, use the partial likelihood method to
derive a system of equations for ξandβ. After that, we re-substitute ξ = 0 into
the equation system. Thus, now we can get the estimated equation system only
about β.

As for ξ, the derivative of the log-partial likelihood function for equation(26) is:

G(ξ) =
n∑
i

δi(xi −
∑

j xjw
(m)
j eξxjI(ε∗i ≤ ε∗j)∑

j w
(m)
j eξxjI(ε∗i ≤ ε∗j)

) (27)

where I(·) is the indicate function. When ξ is 0, just like we mentioned before,
G(0) = 0 can be used as a linear rank-like estimating equation, which means β is
linear to the above equation now(Efron & Stein 2007).

Now, we want to extend this formula. If we are under the condition that it can be
shown that I(0) is an average 0 martingale . Now, this formula can be added as a
function containing weights k(·). That is, we extend G(0) to G(β; k(·)):

G(β; k(·)) =
n∑
i

δik(ε
∗
i )(xi −

∑
j xjw

(m)
j eξxjI(ε∗i ≤ ε∗j)∑

j w
(m)
j eξxjI(ε∗i ≤ ε∗j)

) (28)

To push the estimation, we need to introduce a new method, using Gehan weight
function, k(u) =

∑
j I(u ≤ ε∗j)/n, which lead equation(28) to be monotone (Fy-

genson & Ritov 1994). By imitating the function and adding w(m), we define a
new function as following: k(u) =

∑
j I(u ≤ ε∗j)w

(m)
j /n

Bringing the weight formula back to equation (28), we can get a new monotonic
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estimating function:

G(β; k(·)) =
n∑
i

δik(u)(xi −
∑

j xjw
(m)
j eξxjI(ε∗i ≤ ε∗j)∑

j w
(m)
j eξxjI(ε∗i ≤ ε∗j)

)

=
1

n

n∑
i

δi
∑
j

I(ε∗i ≤ ε∗j)w
(m)
j (xi −

∑
j xjw

(m)
j eξxjI(ε∗i ≤ ε∗j)∑

j w
(m)
j eξxjI(ε∗i ≤ ε∗j)

)

=
1

n

n∑
i

n∑
j

δiw
(m)
j (xi − xj)I(ε

∗
i ≤ ε∗j)

From above we know that this estimation function is monotonic. Therefore,
from the properties of monotone function solutions, if there is a solution for
G(b; k(·)) = 0, it is unique and consistent. At the same time, G(b; k(·)) has
asymptotic normality because it can be written as a U-statistic with a symmetric
kernel(Kunstner et al. 2011)

Meanwhile, using the Gehan-type weight function, the estimating function G(β; k(·)) =
1
n

∑n
i

∑n
j δiw

(m)
j (xi − xj)I(ε

∗
i ≤ ε∗j) can be taken as the gradient of a convex func-

tion.

g(β) =
1

n

n∑
i

n∑
j

δiw
(m)
j |ε8i − ε∗j |I(ε∗i ≤ ε∗j) (29)

According to Minty (1964), if we want to minimizing this convex function, what
we need is finding the root of G(b; k(·)) = 0. By using the linear programming
method, we can find out it easily. Also, Zhang & Peng (2009) claimed that to
other choices of the weight function, the estimation method can be extended too.

Now β has been non-parametric estimated, therefore, accoding to the residuals
function ε = log(ti) − βxi, S(·) can be an estimated based on the complete log-
likelihood function(24) (Kleinbaum & Klein 1996).

We now need to go into detail. Zhang & Peng (2009) give us an example: Set
the distinct uncensored failure residuals be r1 < r2 < · · · < rk and the set of
failures be Krj . R(rj) denote the risk set at rj
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M-step: Ŝ(m+1)(ε) = exp(−
∑

j:rj<ε(
Krj∑

i∈R(rj)
w

(m)
i

))

where Ŝ(m+1)(ε) is an estimate of S(·) in the current.

E-step: If ε > rk , then let S(m+1)(ε) = 0. w
(m)
i in (6) is updated, that is, the

baseline distribution in semi-parametric AFT mixture curing model is updated.

The above reflects the change process from the semi-parametric AFT mixture
curing model to the original semi-parametric AFT model. If there are no cured
patients (yi ≡ 1;wi ≡ 1,) anymore, the E step in the EM algorithm stops, at which
point the program is reduced to the method of the semi-parametric AFT model.
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5 Conclusion and Discussion

Through the research on the contributions and challenges of many research papers,
this paper preliminarily introduces the basic theory of survival analysis and con-
ventional application models, including proportional risk model and accelerated
failure time model. However, in real life, the original model has considerable limi-
tations. Due to the lack of a variety of data, it is difficult for us to apply it directly.
Therefore, based on this problem, this paper first reviews the basic research meth-
ods and research steps. Then, the semi-parametric accelerated failure time model
is studied by using the EM method through the maximum likelihood method and
Newton method. Then, a new research method is proposed by using Gehan-weight
function and convex function, which completes the theoretical research from semi
parametric AFT model to AFT mixture cure model.However, since we have not
applied specific data for the practical application of the model, the convincing is
not strong enough, and this paper is limited to theoretical.
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