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Abstract

The mixed cure model divides the patients into cured group and uncured group by cure rate, then
calculates the survived individuals in the uncured group by the survival probability, reflected
in plateaus in overall Kaplan-Merier curves. In this paper, the data ”brim3_simulated.csv” is
collected by the data collation method compiled by Felizzi et al in 2021. Then combing the KM
survival curve obtained by using survfit function and the mixed cure model estimated by the
smcure package in R to analysis the data.

摘要：混合治愈模型是将经过治疗的患者用治愈概率分成已治愈组和未治愈组，再用生存概率计
算未治愈组中生存下的个体，在 KM 模型中显示为平台期。本文应用了 Felizzi 等人在 2021 整
理的整理数据的方法，收集了数据“brim3_simulated.csv”。然后运用 survfit 方程得到 KM 生
存曲线，并联合 R 的估计混合治愈模型 smcure 包来分析数据。

Keywords: survival analysis, EM algorithm, likelihood function, Proportional hazards model,
mixture cure model, Oncology, R package
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Introduction

Survival analysis aims to study the time to occurrence of the topic and influential factors. The
events usually refer to failure, recurrence or death. Survival function and hazards function
are basic concepts in survival analysis. The two functions and the corresponding probability
density function have relationships which means if one of them is available, you can obtain the
other two. Survival analysis usually constructs the models describing when the event occurs.
In other words, survival time. One of the most popular models is Cox proportional hazard
model(PH) which is semi-parametric that estimates the effect of interested covariates under PH
assumption without using specified baseline function. However, according to Liu and Liao (2020)
[12], to analyze the data in clinical study and medical research, parametric models are chosen
to estimate risk and the number of survivors in treatment groups. While not all the parametric
models are PH models, many of them are Acceleration Failure time models(AFT). Both
of them are well-known in survival analysis models.
Additionally, Liu and Liao state that if the experimenters prefer a smother estimation and tend
to avoid the result like a step functions, they may choose parametric models instead of non-
parametric ones. Although parametric models have specific baseline hazard functions and more
stricter assumption, they are not capable to handle complicated survival functions in clinical
and medical applications. What Liu and Liao are trying to say in 2020 [12], non-parametric
modes are more flexible to solve his problem.
One usual assumption in survival analysis is that all individuals would experience the interested
event if the follow-up time is long enough. However, as the advancement of medical technology,
more diseases are curable so we need to estimate the survival time. In order to solve the problem,
Boag(1949) [2] firstly introduced the original definition of the cure rate model. The model has
been improved by Berkson and Gag in 1952 [1]. They divide the studied population into two
groups, susceptible individuals who may experience the event and nonsusceptible individuals
who are cured and never experience the event in long-term follow-up. The model aims to study
the cure rate and survival function which are named by incident and latency. In 1982, Farewell
[6] proposed a mixture cured model consisting of the binary distribution for latency and Weibull
distribution for the time to the target event. Kuk and Chen (1992) [11] constructed a mixture
model which is the combination of the logistic model and proportional hazard model which is
the generalized form of Farewell’s model.

Literature Review

3.1 Introduction to Survival Analysis

Survival analysis is a method that considers both outcome and survival time and it can fully
use by the censored data. It can finally estimate the distribution of time until the specific
event happens and analyze different factors that may affect the results. There is three main
types of regression model to estimate the time, nonparametric model, parametric model, and
semiparametric model. Streib and Dehmer(2019) [5] state that two methods make a significant
contribution in this field, Kaplan Meier estimator and Cox Proportional Hazards Model. Kaplan
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Meier estimator is a nonparametric model and Cox PH is a typical semiparametric model. Both
models will introduced in the this section.

3.1.1 Functions

Survival Function The probability that the event has not happens until time t

S(t) = 1 − F(t) = P(T ≥ t)

Hazard Function Instantaneous failure rate: in the short interval [t, t + ∆t], the event hap-
pens given that the the event has not occur before time t.

λ(t) = lim
∆t→0

P(t ≤ T ≤ t + ∆t|T ≥ t)
∆t

Deviation Process:
λ(t) =

1
P(T ≥ t)

lim
∆t→0

P(t ≤ T ≤ t + ∆t)
∆t

=
f (t)
S(t)

Probability density function the failure happens at time t

f (t) = lim
∆t→0

P(t ≤ T ≤ t + ∆t)
∆t

Cumulative Hazard Function
Λ(t) =

∫ t

0
λ(u)du

3.1.2 Transformation among the functions

S(t) = exp
[
−
∫ t

0
λ(u)du

]
λ(t) = − d

dt
log(S(t))

f (t) = λ(t)S(t)

S(t) = exp[−
∫ t

0
λ(t)dx] = exp−Λ(t)

f (t) =
dS(t)

dt
⇔ S(t) =

∫ ∞

t
f (u)du = exp

[
−
∫ t

0
λ(u)du

]
⇔ λ(t) =

f (t)
S(t)

= − d
dt

log(S(t))

3.1.3 Data Types for Survival Analysis

Complete data In the research process, complete data X is the survival time of a research
object or the specific time of endpoint event that can be observed and recorded. Survival time
refers to the period experienced from the specified observation starting point (initial event) to
the occurrence of a specific endpoint event.
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Censored and Truncated In contrast to the complete data, at the end of the study, if at the
endpoint the event cannot be recorded clearly due to the occurrence of other events or survive in
the study, we call this type of data censored data(Cr) or incomplete data. In survival analysis,
censored and truncated are two common sorts of data categories.
There are three main reasons for censoring:

1. When the study ends, no event happened since then.

2. Because of the loss of connection or other reasons, the subjects dropped out of the study
and could not continue the follow-up observation

3. The subjects died from other events, such as traffic accidents, or other diseases.

Censoring Assumption Classifying by Kleinbaum and Klein(2012) [10], there are three as-
sumptions about censoring: independent, random, and non-informative. The independent as-
sumption is the most useful one which affects the feasibility to compare the survival experience
of two or more groups. For example, the treatment group and placebo groups. Random censor-
ing is a stronger and more restrictive assumption than independence. On the other hand, the
non-informative assumption means the distribution of survival times (F) provides no information
about the distribution of censorship times (C), and vice versa.

Right censoring we can be sure that failure will occur some time after the censoring time(Cr)
and it is perhaps the most commonly sort of censoring. In this report, all the censor property
only refers to right-censor. It means the event that has not happen in the experience but can
not be guarantee that they won’t happen in the future. In other words, T = min(X, Cr)

Left censoring Suppose that the research object enters the study for observation at a certain
time, but before this time point(Cr), the time point of interest in the study has already happened,
but the specific time cannot be specified. T = max(X, Cl)

Interval censoring Similar to other censored type, interval censoring refer to the loss of
subjects in a interval and failure occurs in this interval (Li, Ri), so we cannot know exactly when
failure occurs.

Truncation Truncated is another critical data property. It refers to the omission of samples
that meet the conditions. This section will introduce manifold categories of censoring and
truncation except for right censoring. Set a observation window (YL, YR). If all the observations
on the (YL, ∞), it will be called left-truncation. Otherwise, it is right-truncation. The conditional
probability of left-truncation would be P(X|X > YL). For left-censoring, we know that the failure
happens before Cl. However, when it comes to left-truncation, we never collect data before YL.

Likelihood construction for censored and truncated data Assuming that the lifetime
and censored time are independent of each other. Exact event time observations tell us the time
when an event occurs. Such data is most useful for estimating the overall event distribution.
However, other truncated data can also provide partial information, and it is wasteful to throw it
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away directly. The following table is constructed by Klein and Moeschberger (1997) [9] showing
the censoring schemes and the Likelihood Function. Note that Cr and Cl are right and left
censoring times for censored individuals and Yl and Yr are the left and right boundaries of
follow-up time for truncated data. The likelihood function of censored data.

Censoring Scheme Likelihood Contribution
Exact lifetime f (t)

Right-censoring S(Cr)

Left-censoring 1 − S(Cl)

Interval-censoring S(Cr)− S(Cl)

Right-truncation f (t)/[1 − S(Yr)]

Left-truncation f (t)/[S(Yl)]

Interval-truncation f (t)/[S(Yl)− S(Yr)]

Table 1: Likelihood Function of incomplete data

L ∝
n

∏
i∈F

f (xi)
n

∏
i∈R

S(Cr)
n

∏
i∈L

1 − S(Cl)
n

∏
i∈I

[S(Cr)− S(Cl)] (3.1)

The difference between truncation and censoring is that we can give some censored individuals
partial information about the time of their event, while truncation is a property that restricts our
observations to a part of the target population and subjects whose activity time meets certain
criteria. An example criterion is like: living longer than a certain age.

3.2 Survival Model

Proportional Hazard Model Regression is the most basic problem in statistics, and almost
all statistical problems can be regarded as special kinds of regression. For example, generalized
linear models are dealing with regression; Survival analysis deals with a special kind of Y with
the censorship. Time series can also be viewed as a special kind of time-based regression. In
survival analysis, the simplest and most basic regression model is the Proportional Hazard
Model (PH Model). In order to introduce Proportional Hazard Model, we need to start from
the most common linear regression: Yi = x′

i β + ϵ. Instead of modeling for y, we need to build
for hazard function λ(t) since λ(t) ≥ 0, so we use the exponential form in the modeling process:

λ(t, X) = λ0(t) exp
[ p

∑
i=1

βiXi

]
= λ0(t)exp(X′β) (3.2)

Accelerated Failure Time Model In this paragraph, I will introduce the knowledge struc-
tured by AFT Saikia and Barman [14]. Contracted to the PH Model, which is based on Hazard,
the AFT Model is based on survival time T. Assuming that Yi = log(Ti), the regression model
of failure time T will be Yi = x′

i β + Wi (Wi’s are i.i.d residuals). By simple transformations,
we obtain Ti = T0 exp(x′

i β) and T0 = exp(W). When the j-th variable changes ∆j, the survival
time will change exp(∆jβ j). For example, AFT models compare survival functions between
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treatment(S0(t)) and placebo group(S(t)). The AFT assumption expressing the survival func-
tion and hazard function of both groups is

S(t, X) = P(Ti ≥ t) = P(T0 ≥ exp(−x′
i β)t) = S0(exp(−X′β)t) (3.3)

λ(t, X) = exp(−X′β)λ0(exp(−X′β)t) (3.4)

f (t, X) = f0(exp(−X′β)t)exp(−X′β) (3.5)

Let acceleration factor γ = exp(−X′β), comparing survival time for patients in the treatment
group and placebo group. If exp(X′β) < 1, the multiplicative effect of covariates in X is deceler-
ated. On the contrary, if exp(X′β) > 1, the multiplicative effect of covariates in X is accelerated.
Among Yi = x′

i β + Wi, the baseline survival time t of the population obeys a probability dis-
tribution, and W is another random variable obeying a probability distribution. The common
distribution is as follows:

t W
Weibull Extreme Value

log-normal Normal
log-logistic Logistic

The relationship between PH and AFT The most difference between the two model is
that AFT is a method modeling based on time while PH based on hazards.

Comparison between PH and AFT Model Assumption Kleinbaum and Klein [10] state
that PH model is applied when comparing hazards and it can describes the multiplicative effect
with hazard. When the model is parametric, they may not fit PH assumption any more. Many
parametric models are AFT model, which can be used comparing survival times and PH model
describes the multiplicative effect with survival time.
The hazard function for PH(3.2) and AFT model(3.4):
PH Model:

λ(t, X) = λ0(t) exp(X′β)

AFT Model:
λ(t, X) = exp(−X′β) λ0(exp(−X′β)t)

Intuitively, the larger exp(X′β) is, the longer the survival time will be. Since S(t) is a monotone
decreasing function, the survival curve will be higher. Since Ti = exp(X′β)T0,

Logarithmically:
PH Model:

logλ(t, X) = logλ0(exp(log t)) + X′β

AFT Model:
logλ(t, X) = logλ0(exp(log t − X′β))− X′β

MTH301 Final Year Project 6
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If the baseline model is logλbase = logλ0(exp(log t))− X′β. PH Model can be regarded as the
upward and downward translation of the benchmark Model, while AFT Model can be regarded
as a left and right translation. Only when the reference model is linear, the model after left-
right translation and up-down translation can coincide. From the comparison between Weibull
distribution and exponential distribution in the previous section, we know that Weibull distri-
bution is a linear model, so Weibull regression is the only one that satisfies both AFT and PH
assumptions.

Semi-parametric ⇒ parametric model Peng and Yu(2021)[15] introduce the latency part
needs to use the assumption of PH and AFT. The parametric function needs to specify the
baseline partition. Operating survival PH function as an example:

S(t|x) = S0(t)exp(−X′β)

Let S0(t) = e−λt (exponential distribution with rate λ) ⇒ S(t) = e−λexp(−X′β)t (exponential
distribution with rate λ × exp(−X′β))
Let S0(t) = e−λtp (Weibull distribution with shape parameter p and scale parameter λ) ⇒ S(t) =

e−λexp(−X′β)tp (Weibull distribution with shape parameter p and scale parameter λ × exp(−X′β))

3.2.1 Parametric Survival Models

The section elaborates on the parametric models of time to occurrence of the event which is
the specific distribution with unknown parameters. In contrast to semi-parametric models, the
parametric models have specified λ0(t; S) for hazard function as well as S0(t; S) for survival
function. The following sections will provide the different parametric models. The section will
list parametric models substitute the sepcific λ0(t; S) into PH or AFT models.

Exponential Model Let λ0(t, S) = 1/S and obtain the simplest parametric survival model,
the exponential regression model and it indicates the density function of survival data is also
an exponential distribution. The exponential distribution was the simplest distribution utilized
to model lifetime data. It is a model for the life of products with a constant failure rate with
memoryless property. Consequently, it is inappropriate that employ the model in the actual
survival applications. It has only parameter S given k =1 in the Weibull distribution.

f (t|S) = 1
S

exp
(
− t

S

)
, t ≥ 0 (3.6)

S0(t; S) = exp
(
− t

S

)
(3.7)

λ0(t; S) = 1/S (3.8)

Scale Parameter - S The scale parameter adjusts the scale of the density function along the
time axis. Therefore, the transition of this parameter has the same influence as the change in
time scale.

MTH301 Final Year Project 7
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Exponential PH Model The exponential PH model will be λ(t, X) = λ0(t; S)exp(X′β).
Since exp(X′β) exist the intercept term β0 which have the same effect as λ0(t; S). Therefore, we
need to reduce the model into λ(t, X) = exp(X′β).

Exponential AFT Model Similar to exponential PH model, set λ0(t; S) = 1/S. A

λ(t, X) = exp(−X′α)/S

After simplified the intercept term, we will get the exponential PH model in case of hazard
function:

• λ(t, X) = exp(−X′α)

• S(t) = exp(− 1
S t)

• t = [−ln(S(t))]× S = [−ln(S(t))]× exp(−X′α) seting S = exp(−X′α).

Comparison between exponential PH model and AFT model :
Exponential AFT Model ⇔ Exponential PH Model

• Using maximum likelihood estimation to obtain the value of parameter(R: summary()).The
distribution is assumed normally distributed.

• There is a relation between two models: β j = −αj

HR > 1 exposure harmful survival γ > 1 exposure benefits survival
HR = 1 no effect γ = 1 no effect
HR < 1 exposure benefits to survival γ > 1 exposure harmful survival

Table 2: general factor comparison between PH and AFT model

Weibull Model Let λ0(t, S) = ktk−1/Sk, then it will obtain the Weibull regression model.
Weibull regression is the only regression that simultaneously satisfies the assumptions of both
PH and AFT models. In order to obtain the meaning of the model, the derivation process is
followed.

Derivation process for CDF of Weibull distribution ：P(T < t) = F(t) the probability
that the event will happen before t. Therefore, the survival function S(t) = 1− F(t) = P(T ≥ t).
Assuming that if one people does not experience until t → ∞ so do all n people. Total number
of n people are probability independent.

1 − Pk = (1 − P)k

Let F(t) = 1 − e−a(t) with the purpose of get the simplest form for n person’s failure rate

1 − F(t) = 1 − Pk = (1 − P)k = e−ka(t)

a(t) =
(

t − D
S

)
MTH301 Final Year Project 8
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F(t) = 1 − exp

[
−
(

t − D
S

)k
]

If D = 0 that will lead to two parameter Weibull distribution:

f (t|S, k) =
k
S

(
t
S

)k−1

exp

[
−
(

t
S

)k
]

, t ≥ 0 (3.9)

S0(t|S, k) = exp

[
−
(

t
S

)k
]

(3.10)

λ0(t|S, k) =
ktk−1

Sk (3.11)

Scale Parameter - S The shape parameter controls the overall shape of the density function
that ranging between 0.5 and 8.0. The estimated standard errors and confidence limits displayed
by the program are only valid when B > 2.0.

Shape Parameter - k The shape parameter controls the tread of hazard function. When
k>1, the hazard function will be increase and convex. When k<1, the hazard function will be
decrease and concave. If k = 0, the hazard function will be constant and the Weibull model will
reduce to exponential model.

Threshold Parameter - D This parameter sets the minimum time for the model.

Weibull PH Model Here we emphasize that the X′β contains no intercept term, otherwise,
the problem would still be unrecognized. Similar to the exponential distribution, we can reduce
it to the following form

• λ(t) = [ktk−1/Sk]exp(X′β)

k > 1 time ↑ Hazard ↑
k = 1 constant Hazard
k < 1 time ↑ Hazard ↓

Table 3: monotonic of Weibull Hazard

Weibull AFT Model: By equation 4.18, here is the expression of t:

t = [−lnS(t)]1/k)× S

= [−lnS(t)]1/k)× exp(α0 + α1X1)
(3.12)

• S = exp(α0 + α1X1)

• The accelerator factor γ = exp(α1) is direct effect of an exposure which depends on survival
time.

• Weibull Linearity transformation: S(t) = ln[−ln(S(t))] = k[ln(t)− ln(S)].The parameter
k is the slope term of while ln(S) is the intercept term.

Comparison between PH model and AFT model:
MTH301 Final Year Project 9
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• It is a unique property that Weibull AFT Model ⇔ Weibull PH Model

• There is a relation between two models: β j = −αj p

3.2.2 Nonparametric Survival Models

Kaplan-Meier Estimator In 1958, Kaplan and Meier have introduced a nonparametric
statistics to estimate the survival function which have censored data. rj are element in the
risk set R(tj), which is the collection of survival and uncensored individuals. And each individ-
uals in the risk set survive longer than tj. The variable dj are number of failure subject in the
time interval [tj−1, tj).

Ŝ(t(j)) = Ŝ(t(j−1))× P̂(T > t(j)|T ≥ t(j)) =
j−1

∏
i=i

P̂(T > t(i)|T ≥ t(i))

Ŝ(t) = ∏
tj≤t

(
1 −

dj

rj

)
When experience hasn’t start, Ŝ(0) = 1. The long plateau stands for the cured patients after
long follow-up time.

Nelson-Aalen Estimator Nelson-Aalen Estimator is a non-parametric estimator to estimate
the cumulative hazard rate function from censored survival data. it can be used to check if the
parametric models graphically appropriate.

Λ̂(t) = ∑
tj≤t

(
1 −

dj

rj

)
Then the survival sunction is: S(t) = eΛ(t)

3.2.3 Semi-parametric Model

Parametric models have higher requirements on model assumptions, in other words, they are
not robust enough. So we want to lower the model assumptions appropriately. At the same
time, if we want to preserve some of the explanatory of the model, we also need to preserve
parameters appropriately. This is called a semi-parametric model. The most common and
important model in survival analysis: Cox regression model. Cox proportional hazard model
has both the advantage of parametric and nonparametric model.

The basic assumption for Cox Regression

λ(t, X) = λ0(t) exp
[ p

∑
i=1

βiXi

]
In Cox PH model, we classify the influence of explanatory variables into the parameter part,
and the specify λ0(t) form of the model into the non-parameter part. Xi = (Xi1, Xi2 , · · · , Xip)
are explanatory variables. logλ(t, X) changes linearly with beta’s.

MTH301 Final Year Project 10
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Assumption

• The hazard ratio is assumed to remain the same for the entire follow-up and independent
to time t. eβ is the hazard ratio which means the percentage changes for per unit change
in X.

λ(t|X = x + 1)
λ(t|X = x)

= eβ

• The survival time of every patients are independent.

• the censoring is uninformative about the target outcome. Let us write it in a formula：
Ti ⊥ Ci|Xi

Advantages of PH Model

• It is a semiparametric and the baseline function is arbitrary unspecified.

• If the model met the Cox PH assumption, then we will get robust result.

Hazard Ratio Here is the expansion form of HR:

HR =
λ(t, X∗)

λ(t, X)
= exp

[ p

∑
i=0

βi(X∗
i − Xi)

]
β is referred to the hazard ratio (HR). (X∗

i : group with larger hazard; Xi: group with larger
hazard). β is the log hazard ratio (HR).Therefore, for each unit of increase in X:

log
[

λ(t, X∗)

λ(t, X)

]
=

p

∑
i=0

βi(X∗
i − Xi)

Transformation model: The fomula λ(t, X) = λ0(t) eX′β inplies the survival function:

S(t, X) = S0(t)exp(X′β)

Then transform the survival function into a linear form:

log[log{S(t, X)}] = log[log{S0(t)}] + X′β

g{S(t, X)} = g{S0(t)}+ X′β

The function g() : (0, 1) → (−∞, ∞) is a smooth monotone function.

• There are two unknown parameters: {β, λ0(t)}

• The likelihood function is:

L(β, λ0(t)) =
n

∏
i=1

λ(Xi)
δi S(Xi) =

n

∏
i=1

λ0(ti)
δi eδi X′βe−

∫ ti
0 λ(u)du

Note that the three likelihood form for the Cox PH model are shown in the section 4.1.

MTH301 Final Year Project 11
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3.3 Logistic Model

Logistic model is a relationship between predictor values and categorical response variable. If
the response is binary(if Y = 1 or Y = 0), we will use the binary logistic regression models.

P(Y = 1) = π(z) =
exp(Z′b)

1 + exp(Z′b)
, Z′ = [z1, z2, ..., zn]

′

Note that π(z) is stand for the ”success probability”, which means the probability of an observa-
tion of the specific category. For n sample set, the likelihood function of the likelihood function
of the binary logistic regression is shown following:

L(b; y, Z) =
n

∏
i=1

π(zi)
yi [1 − π(zi)]

1−yi

=
n

∏
i=1

(
exp(z′ib)

1 + exp(z′ib)

)yi
(

1
1 + exp(z′ib)

)1−yi
(3.13)

The log-likelihood is:

l(b) =
n

∑
i=1

(yilog π(zi) + (1 − yi)log[1 − π(zi)])

=
n

∑
i=1

(yizib − log(1 + exp(zib))
(3.14)

Metholody

Let the joint distribution of X1, X2, ..., Xn is f (X1, X2, ..., Xn|θ) and give each of the random
variable a observed value, X1 = x1, X2 = x2, ..., Xn = xn. θ is the collection of unknown parameter
that effect the contribution of different factors X1, X2, ..., Xn. The latent variable Zi’s are the
same. X and Z are the data set of Xi and Zi.

4.1 Maximum Likelihood Estimation

The most common way to estimate the optimal parameter space θ is finding the MLE by
differentiating lnL(θ) and let equal to 0. Sometimes, some complicated likelihood function so I
need to introduce two iterative procedure to obtain a stable parameter value, Newton-Raphson
algorithm and EM algorithm.

Likelihood Likelihood function is very important in statistical inference and it has similar
meaning as probability. Probability means forecasting the possibility of the results with known
parameters. Likelihood, using the existing outcome x1, x2, ..., xn, estimates the probability of a
specific parameter values. In other words, likelihood function is the probability density func-
tion of parameters. Therefore, likelihood function can be seen as the opposite of conditional
probability, which can be written as P(A|B) = P(A,B)

P(B) . According to Bayes’ theorem,

P(B|A) =
P(A|B)P(B)

P(A)

The opposite step to construct a likelihood is:

MTH301 Final Year Project 12
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We need to apply L(B|A) to estimate the parameter B(β) in condition that the event A(x1, ..., xn)
happened. However, different from the aim conditional probability, we usually focus on the
parameter b. For all α > 0 we will have likelihood function L(b|A) = αP(A|B = b). Note that
we are not assumed that the likelihood function to satisfy ∑b∈B P(A|B = b) = 1. (Question: α

= P(B)/P(A))

4.1.1 Likelihood Function

Let the probability distribution function for xi is have a parameter set θ is f (X|θ). The joint
probability distribution for parameter θ.

f (X1, X2, ..., Xn|θ)

To obtain the likelihood function , replace each random variable Xi with a specific value xi .

L(θ|x) = L(θ|x1, x2, ..., xn) = f (x1, x2, ..., xn|θ) =
n

∏
i=1

f (xi; θ)

One commonly used process of MLE:

θ̂MLE = max
θ

l(θ|x) (4.1)

l(θ|x) =
(

n

∏
i=1

f (xi; θ)

)
=

n

∑
i=1

ln fi(xi; θ) (4.2)

∂lnL
∂θi

= 0 (i = 1, . . . , p) (4.3)

Example Using the likelihood function construction methods, we aim to obtain the likelihood
function of the Cox PH model: On account of the all the data in this report is right-censored,
the data set Xi will be divided into two categories:
When Xi is censored: According to table 1:

Lj(β, λ0(t)) = S(Xi)

When Xi is a observed:

Lj(β, λ0(t)) = f (Xi) = S(Xi)λ(Xi)

Therefore, the full likelihood is following:

L(β, λ0(t)) =
n

∏
i=1

λ(Xi)
δi S(Xi) =

n

∏
i=1

λ0(ti)
δi eδi X′βe−

∫ ti
0 λ(u)du

4.1.2 Partial Likelihood Function

If we are interest in the parameter set θ = [α, β], we may obtain the likelihood function as:

L(α, β|x) = L1(α|x) + L2(β|x) (4.4)

When there are no relationship in the data set, the partial likelihood is effective, which means
no two subjects have the same time. Otherwise, if there are relevance in the data set, the true
partial log-likelihood function involves permutations and can be time-consuming to compute. In
this case, the Breslow approximations to the partial log-likelihood can be used.
MTH301 Final Year Project 13
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Example For logistic regression, the maximum of the likelihood function is able to estimate
the Cox PH model parameter. For the Cox model, L(b) is a partial likelihood function we only
consider the failure time of the susceptible individuals. b is the set of all the parameters of the
covariates. Then the maximization process is:

• Partial likelihood are conditional probabilities of the product of observed failure times,
seeing the observed failure, given the risk set at that time and a failure will occur. In
other words, these are the conditional probabilities of the observed individual, chosen from
the risk set. In summary, for failure time for j-th individual Xj, the contribution to the
likelihood is

Lj(b) = P(individual j f ails| one f ailure f rom R(Xj))

=
P(individual j f ails| at risk at Xj)

∑k∈R(Xj) P(individual k f ails| at risk at Xj)

=
λ(Xj|Zj)

∑k∈R(Xj) λ(Xj|Zk)

(4.5)

• Note that the procedure reasoning procedure applies the definition of hazard function λ(t)

and probability density function f(t): k ∈ R(tj) stands for the k-th survival individual at
time point tj−.In other word, R(t) = {i : Xi ≥ t}. Therefore, P(R(Xj)) = P(Xj ≥ t) =

S(t).

P(individual j f ails| at risk at Xj) =
the f ailure happens at time t

S(t)
=

f (t)
S(t)

= λ(t)

In that case，the probability of death occurring at that time point is:

exp(X′
jb)

∑k∈R(tj) exp(Xkb)

• Since the form of Cox PH model is not complicated , we can use derivatives to get the
maximum value of the likelihood function.

1. form L

2. maximize lnL (Solve iteratively ∂lnL
∂bi

= 0(i = 1, . . . , p))

Likelihood function:

L(b|x1, x2, ..., xn) =
n

∏
j=1

exp(Z′
j β)

∑k∈R(tj) exp(Zkβ)

.

4.1.3 Profile likelihood function

Similarly to the parameter set θ = [α, β]. However, the parameter α can be substitute by β =
g(α). Then the likelihood function would be:

L(g(β), β|x) (4.6)

For example, if we want to get the likelihood function for normal distribution X ∼ N(µ, σ2).
Then we can get the likelihood function: L(µ|x) = L(µ, σ̂µ|x) = L(µ, ∑n

i (xi − µ)2/n|x).
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4.2 Newton-Raphson Algorithm

The Newton-Raphson algorithm is a iterative method solving the equation with its derivatives
which can be applied in calculating extremely complicated nonlinear functions obtaining from
observed data. This section will start with maximizing the likelihood function which ia easiler
to understand and the process can be visualized.

4.2.1 The Newton Raphson Algorithm to Maximum 1 Variable Likelihood Function

Taylor Series Approximation The first step of developing the Newton-Raphson algorithm
is to approximate the likelihood function with a quadratic form which is easily to maximized.
Therefore, the Taylor Series of the function f is

f (x + h) = f (x) + f ′(x) +
1
2

f ′′(x)h2 + · · ·

The first order of Taylor approximation of f is

f (x + h) ≈ f (x) + f ′(x)h

Similarly, there is the order of Taylor approximation has smaller h and more accurate approxi-
mation.

f (x + h) ≈ f (x) + f ′(x)h +
1
2

f ′′(x)h2

To simplified the calculation in the next step, we need to rewrite the Taylor approximation
equations.

f (x + h) ≈ a + bh

f (x + h) ≈ a + bh +
1
2

ch2 (4.7)

where a = f (x), b = f ′(x) and c = f ′′(x). The equation (4.4) is the second order polynomial of
h.

Maximized the Second Order Polynomial After reduce the function in to a polynomial
function, we can simulate the algorithm and generalized it into higher dimension. Recall the
fomula 4.4

f (x + h) ≈ a + bh +
1
2

ch2 (4.8)

f ′(x + h) ≈ b + ch (4.9)

f ′′(x + h) ≈ c (4.10)

Let b+ cĥ = 0, we can get ĥ = − b
c is the extreme point of f . In condition that f ′′(x+ h) ≈ c < 0,

which means f (− b
c ) would maximum. (Note that b = f ′(x) and c = f ′′(x).) To sum up, the x

value that maximizes the second order Taylor approximation of f :

x + ĥ = x − b
c

= x − 1
f ′′(x)

f ′(x)
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General Form We can compute the MLE iteratively by

θ̂k = θ̂k−1 +
U(θ̂k−1)

I(θ̂k−1)

U(θ̂k−1) is the derivative of L(θ) with respect to θ and I(θ̂k−1) = −U′(θ̂k−1).

4.3 EM Algorithm

When we try to get the θ which is the set all parameters, we need to use maximum likelihood
estimation. However, we can get ideal solution in the model which have latent variables. Hence
EM Algorithm has become a popular to estimate the parameter. Let L(θ) = log P(x|θ), the
maximum likelihood function would be

θMLE = log f (x|θ)

X = {x1, x2, ..., xn} is the observation values and Z is latent variable. The folmula of EM algorithm
is
E-step: get the value of P(z|x, θ(t) and take it into

Ez|x,θ(t) [log P(x, z|θ)]

M-step: ;Maximize the the formula above and get the

θ(t+1) = arg max
θ

∫
Z

Ez|x,θ(t) [log P(x, z|θ)] = arg max
θ

∫
Z

P(z|x, θ(t))log P(x, z|θ)dz

Equation Deducing Process

log P(x|θ) = log P(x, z|θ)− log P(z|x, θ)

log P(x|θ) = log
P(x, z|θ)

q(z)
− log

P(z|x, θ)

q(z)
Get the expectation of both sides with q(z):

Le f t :
∫

q(z) log P(x|θ) dz = log P(x|θ)
∫

q(z) dz = log P(x|θ)

Right :
∫

q(z) log
P(x, z|θ)

q(z)
−
∫

q(z) log
P(z|x, θ)

q(z)
= ELBO + KL(q(z)||P(z|x, θ))

Therefore we can get
log P(x|θ) = ELBO + KL(q(z)||P(z|x, θ))

ELBO stands for evidence lower bound because P(x|θ) ≥ ELBO.

θ̂ = arg max
θ

ELBO = arg max
θ

∫
q(z) log

P(x, z|θ)
q(z)

dz

In order to maximize ELBO, we need let ELBO equals to its upper bound value P(x|θ). Since
KL[ q(z) || P(z|x, θ) ] ≥ 0 and KL( q(z) || P(z|x, θ) ) = 0 if q(z) = P( z |x, θ(t)).

θ̂(t+1) = arg max
θ

∫
P( z |x, θ(t)) log

P(x, z|θ)
P( z |x, θ(t))

dz

Since P( z |x, θ(t)) is not related with parameter θ, we can simplified it

θ̂(t+1) = arg max
θ

∫
P( z |x, θ(t)) log P(x, z|θ) dz
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4.4 The Proportional Hazards Cure Model

4.4.1 Mixture Cure Model

The section will focus on the cure rate, survival distribution and covariates’effects. If the disease
is not cured, that mean the event will still happens eventually, and we can call this incidence.
Given that there is a probability that the event will occur, we need to find the survival time
using the latency submodel.

Survival Data Set For the mixture cure model, there are two random variables follows, t and
δ. ti represents the follow-up time of the i − th observations, it is the minimum value between
failure time (Fi) and censoring time (Ci). In summary , ti = min(Fi, Ci). The censorship status
δi , have alternative values. If ti = Ti, δi = 1 or δi = 0, if ti = Ci. Both ti = min(Fi, Ci) and δi

are Bernoulli random variables indicating that δ = 0 if the object is censored and δ = 1 otherwise.

The possible covariates xi and zi influence the latency and incidence regression corespondingly.
The cure rate depends on zi and the survival probability of uncured patients depends on xi.
Note that X′ = [x0, x1, ..., xn]′ and Z′ = [z0, z1, ..., zn]′

Overall, we can usually represent the observation for i-th individual into Θ = {ti, δi, xi, zi}n
i=1.

Let another Bernoulli random variable Y be the indicator to show if a subject is cured or not.
If Y = 1, the subject is susceptible which means it hasn’t been cured and will experience the
event in the long term. On the other hand if Y = 0, that means it has been cured and never
experience the event in other word, nonsusceptible.
So a good question is, what is the difference between the two indicators δ and Y. All the
individuals with uncensored data δ = 1 must be in the uncured groupδ = 1. That because only
susceptible subjects have probabilities to experience the event. If the patients are not cured,
there will be sectional individuals [δi = 1] ⊂ [Yi = 1] in the experiment period. The detailed
explanation are shown followed:

Y = 1, uncured (susceptible)

δi = 1, the event happens

δi = 0, censored data

Y = 0, cured (insusceptible) all censored

(4.11)

Observed and Censored groups The sample can be divided in two groups: By the table
1, the likelihood construction of the failure time and right-censored time are equal to f(t) and
S(t) respectively. Multiplying the cure rate, we can get:
Observed Group (δi = 1)

P(Y = 1|z)× f (t)

π(z)× f (t)
(4.12)

Censored Group(δi = 0)

S(t|x, z) = P(Y = 0|z) + P(Y = 1|z)S(t|x, Y = 1)

S(t|x, z) = (1 − π(z)) + π(z)S(t|x, Y = 1)
(4.13)

Therefore, the likelihood function of i-th subject combining (4.12) and (4.13) the equation.
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Cure Rate π(z) Since the dependent variable Y is binary because P(Y = 0) + P(Y = 1) = 1.
The independent variable xi and zi has minor co-linearity and independent with each other.
xi and zi are possible covariates in latency and incidence. Therefore the model fit the logistic
regression assumption and the incident π(z) can be defined below with unknown parameter b.

P(Y = 1) = π(z) =
exp(Z′b)

1 + exp(Z′b)
, Z′ = [z1, z2, ..., zn]

′

There are some other function that can be used in next section.

f (t|x, Y = 1) = S(t|x, Y = 1)× λ(ti|Y = 1) (4.14)

λ(ti|Y = 1) = λ0(ti|Y = 1)exp(X′β) (4.15)

Λ(ti|Y = 1) = Λ0(ti|Y = 1)exp(X′β) (4.16)

S(t|x, Y = 1) = exp
[
−
∫ t

0
λ(ti|Y = 1)dx

]
= exp[−Λ(ti|Y = 1)] (4.17)

Therefore we can get the probability density function and the survival function,

S(t|x, Y = 1) = exp[−Λ0(ti|Y = 1)exp(X′β)] (4.18)

f (t|x, Y = 1) = exp[−Λ0(ti|Y = 1)exp(X′β)]× λ0(ti|Y = 1)exp(X′β) (4.19)

Model Estimation

5.1 Likelihood Construction

The likelihood function of survival models need to consider if the observation is censored or
failed. If the event occurs(δ = 1), we need to use probability density function to estimate the
time to event of interest. Or if the individual is censored(δ = 0), survival function can be used
to evaluate the probability.

Likelihood Function The likelihood function L(θ) is consist of two components. Let α be a
vector of unknown parameter in Λ0(ti|Y = 1)(or λ0(ti|Y = 1), S0(ti|Y = 1)) and set the joint
set of likelihood parameter space θ = (b, β, α). According to the likelihood construction in the
equation (4.12) and (4.13), here is the likelihood function format following.

L(θ) ∝
n

∏
i∈F

fθ(xi) ∝
n

∏
i∈C

Sθ(xi)

where F (for δ = 1) and C (for δ = 0) are the data sets of observed lifetime and censored time
respectively. According to the formula (4.1) and (4.2):

L(θ) =
n

∏
i=1

[π(zi) f (ti|x, Y = 1)]δi × [(1 − π(zi)) + π(zi)S(ti|xi, Y = 1)]1−δi (5.1)

Substitute equation (4.18) and (4.19) into the formula, then we can get the full likelihood function
introduce by Sy and Taylor in 2000[8].

L(θ) =
n

∏
i=1

[
π(zi)e−Λ0(ti |Y=1)eX′β]× λ0(ti|Y = 1)eX′β

]δi

×[
(1 − π(zi)) + π(z)e−Λ0(ti |Y=1)eX′β

]1−δi

(5.2)
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We need to get optimal b̂ and β̂ by maximizing the likelihood function. The next section was
concerned with two methods that commonly used to estimate the models.

5.2 Direct Maximization Method

Then we can get the log-likelihood function of mixture cure model.

l(θ) = logL(θ) = log
n

∏
i=1

[π(zi) f (ti|z, Y = 1)]δi × [(1 − π(zi)) + π(zi)S(ti|xi, Y = 1)]1−δi

The log-likelihood function need to be maximized. One direct method is Newton-Raphson. Let

U(θ) =
∂l(θ)

∂θ
=


∂l(θ)

∂b
∂l(θ)

∂α
∂l(θ)

∂β

 , I(θ) =
∂2l(θ)
∂θ∂θ′ =


∂2 l(θ)
∂b∂b′

∂2 l(θ)
∂b∂α′

∂2 l(θ)
∂b∂β′

∂2 l(θ)
∂α∂b′

∂2 l(θ)
∂α∂α′

∂2 l(θ)
∂α∂β′

∂2 l(θ)
∂β∂b′

∂2 l(θ)
∂β∂α′

∂2 l(θ)
∂β∂β′


Then taking iterated steps unsing the general form:

θ̂k = θ̂k−1 +
U(θ̂k−1)

I(θ̂k−1)

5.3 Applying the EM Algorithm

The EM algorithm is another method to maximize the likelihood function to obtain the corre-
sponding parameters. Y is a latent variable in the model and we need to show the effect two
indicators δi and yi. There are three main categories. Since the set {δi = 1} is the subset of
{Yi = 1}, y need to be considered first.

Y = 1, uncured (susceptible)

δi = 1, the event happens

δi = 0, censored data

Y = 0, cured (insusceptible) all censored

(5.3)

P(z|Y = 1) = π(zi)
yi

P(z|Y = 0) = (1 − π(zi))
1−yi

S(x|Y = 1) =
n

∏
i=1

[
λ0(ti|Y = 1)eX′β

]δiyi

× e−Λ0(ti |Y=1)eX′β

(5.4)

Therefore, substitute the (5.4) into (5.2)
Then we will get the complete-data likelihood.

L(θ; y) =
n

∏
i=1

π(zi)
yi [1 − π(zi)]

1−yi

n

∏
i=1

[
λ0(ti|Y = 1)eX′β

]δiyi

× e−Λ0(ti |Y=1)eX′β

=
n

∏
i=1

π(zi)
yi [1 − π(zi)]

1−yi λ(ti|Y = 1)δiyi × S(ti|Y = 1, xi)
yi

= L1(b; y)×L2(β, α; y)

(5.5)

In order to simplified the calculation, we need to take logarithm of the both sides of the function
which will be similar to the format of partial likelihood function.

l (θ; y) = l1 (b; y) + l2 (β, α; y) (5.6)
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Incidence log-likelihood

l1(b; y) = logL1(b; y) =
n

∑
i=i

yilog[π(zi)] + (1 − yi)log[1 − π(zi)] (5.7)

Latency log-likelihood

l2(β, α; y) = logL2(β, α; y) =
n

∑
i=i

yiδilog[λ(ti|Y = 1, xi)] + yilog[S(ti|Y = 1, xi)] (5.8)

According to Peng and Yu, w(m)
i be the probability of a survival rate among the susceptible

subjects. Given condition that the parameter value set θ(m) = (b(m), β(m), α(m)), we need to take
conditional expectation of yi using the linear function of yi in equation (5.7) and (5.8). [15]

wi(t) = E(yi|Θ, θ(m)) =
π(zi)S(ti|x)

(1 − π(zi)) + π(z)S(ti|x)
|θ=θ(m)

5.3.1 E-Step

The E-step takes the conditional expectation of L(b, β, α; y) with respect to the latent variable
y′

is. The E-step in the k-th iteration and get posterior expectation of yi as following:

w(m)
i = E(yi|θ(m)) = δi + (1 − δi) w0i(t) |b=b(m−1) ,β=β(m−1) ,α=α(m−1)

w(m)
i = E(yi|θ(m)) stand for the conditional probability The equation above show that w(m)

i = 1

if δi = 1 and w(m)
i is the probability value of uncured patient if δi = 0.

Since we need to taking expectation of partial likelihood function. According to the equation
(5.6).

logL(θ; y, w(m)) = logL1(b; y, w(m)) + logL2(β, α; y, w(m)) (5.9)

which w(m) = {w(m)
i |i = 1, 2, ...} represent the fraction that belongs to the susceptible group.

Since δilogw(m) = 0 and δiw(m) = δi, the expectation of (5.8) and (5.9) follows:

E[logL1(b; y)] =
n

∑
i=i

w(m)
i log[π(zi)] + (1 − w(m)

i )log[1 − π(zi)] (5.10)

E[logL2(β, α; y)] =
n

∑
i=i

δilog[w(m)
i λ(ti|Y = 1, xi)] + w(m)

i log[S(ti|Y = 1, xi)] (5.11)

5.3.2 M-Step

The M-Step maximize the equation in (5.10) and (5.11) respecting the parameter b, β and α

with condition of w(m). Cai, Zhou and Peng etc. applied ”glm” functions in R to estimate
the parameters in equation (5.10) and different link function can be used in the mixture cure
model.[3] In order to deal with the nuisance function λ0(ti|Y = 1) and S0(ti|Y = 1), we perform
an additional maximization step in the M step using profile likelihood techniques. There are
two methods to handling the Cox PH model : the Breslow-type estimator for λ0(ti|Y = 1)

and the product-limit estimator for S0(ti|Y = 1).
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PHMC Model Peng and Dear (2000) and Sy and Taylor(2000) utilize this method to obtain
optimal β which involves the profile likelihood method originated from the standard PH model
without specific baseline hazard function λ0(t, X)[13, 8]. According to the format of equation
(5.11), it can be rewritte with:

n

∏
i=1

[λ0(ti)exp((βxi) + log(w(m)
i ))]δi S0(ti)

exp[(βxi)+log(w(m)
i )] (5.12)

The ”coxph” function in R is practical to estimate the parameters in equation (5.11) and it is
similar to the standard PH model with the additional offset variable log(w(m)

i ). In order to take
E-step progressively, the value of Ŝ0(t|Y = 1) and λ̂0(t|Y = 1) need to be updated for each
step number m. The next section of the report was concerned with two estimation methods,
Breslow-type estimator and product-limit estimator, presented by Sy and Taylor in 2000. [8]
After geting the value of λ̂0(t|Y = 1), we need to erase the parameter α since it is the vector
describing the unknown Λ0(t|Y = 1).

Breslow-type estimator In order to continue of the EM-Algorithm, we need to update the
survival function in the discrete uncensored failure timeline t(1) < t(2) < · · · < t(k). dt(j) denotes
the number of event happened at ti and R(t(j)) denote the risk set at time t(j) The profile
likelihood estimator use the Nelson-Aalen estimator with sight modification:

Ŝ0(t|Y = 1) = exp

− ∑
j:t(j)≤t≤y

dt(j)

∑i∈R(j)
w(m)

l eX′β

 (5.13)

Λ̂0(t|Y = 1) = ∑
j:t(j)≤t≤y

 dt(j)

∑i∈R(j)
w(m)

l eX′β

 (5.14)

If t→ ∞, the value of Ŝ0(t|Y = 1) would approach to 0. If we set Ŝ0(t|Y = 1) = 0 for t > t(k),
we will get Ŝ(t|Y = 1) = Ŝ0(t|Y = 1)exp(X̂′β) Substituting equation (5.14) into the L2(β, α; y),
then we can get the paritial likelihood function of β:

L3(β; w(m)) = ∏
j:t(j)≤t≤y

− eX′β

∑i∈R(j)
w(m)

l eX′β

δi

(5.15)

Except for the weight w(m)
i , the format is similar to the partial likelihood function exp(X′

jb)

∑k∈R(tj )
exp(Xkb) .

Giving the known w(m)
i , maximizing L3 concerning β.

Application

R code The R package smcure can fit semiparametric PH mixture cure model or AFT mix-
ture cure model by the EM algorithm.Therefore, the target form, PHMC model with logit like
function can be estimating by:
smcure (formula, cureform, offset = NULL, data, na.action = na.omit, model =
”ph”, link = ”logit”, Var = TRUE, emmax = 50, eps = 1e-07, nboot = 100)
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6.1 Mixture Cure Models in Oncology

Felizzi and colleagues have designed a tutorial for practical usage of the mixture cure model pro-
viding step-by-step instructions for the entire implementation workflow. [7] It includes collecting
and combining data from different sources, regressing the model using maximum likelihood es-
timation methods, and interpreting the model results. This section introduced the procedure
of implementation and interpretation of mixture cure models in R which will be widely used
as new cancer treatments enter the market, this model will be widely used in health economics
analysis. The following steps will provide innumerable .csv files and we need to choose countries
that we are interested.

Step 1: Choosing countries of interest The first step is listing all the target country names
into“country_list” file and adding the corresponding code names. Then, we can use the func-
tion“hazard_function” by applying the“funs_hazard.R” and“funs_long_term_survival.R”.
The algorithm traverses the age and sex distribution of the selected country/region and builds
a general population background mortality curve, which is a weighted average of the curves
constructed for age groups, weighted according to their proportions. The next step is obtaining
the background survival country-specific data.

Step 2: Acquiring background Mortality data The background survival data is the
survival time for the cancer-free individuals. The overall survival function (So(t))and mortality
rate(λo(t)):

So(t) = Sb(t)× ((1 − π(z)) + π(z)Su(t))

λo(t) = λb(t)×
π(z)× fu(t)

1 − π(z) + π(z)Su(t)

• Su(t) and λu(t) denote the mortality and survival function uncured groups. While fu(t)

represents the probability density function of Su(t).

• Sb(t) and λb(t) is the estimate background hazard and survival function in cured patients.

Preparing for the analysis procedure in the following parts, I need to access the mortality data.
Exerting the“funs_load_mort_table.R”for downloading data from Human Mortality Database
(HMD)and “mortal_table_wrap.R”to prepare for analysis.

Step 3: Clinical Trial Data In the tutorial, Felizzi et al. identified six characteristics to
acquire patient demographics and survival data from clinical trials of interest. For the purpose
of build a mixed cure model, fairly number of patients is required to examine such as baseline
age, sex and country of each patient, build a mixed cure model indicators, time of observation
prior to build a mixed cure model, and year of trial registration. This segment aim to simulated
the data set BRAF Inhibitor in Melanoma 3 (BRIM-3). BRIM-3 is a phase 3 of a randomized
controlled trial (PCT) experience that compares therapeutical efficacy result of melanoma using
dacarbazine and vemurafenib. With the intention of protect the privacy for the patients, Felizzi
et al. design a method to decide the ages by adding a random Gaussian noise which the mean
is equal to 0 and variance is equal to 3 years while adding another one on mortality which
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has a mean of 0 and a variance of 0.01 years. After the steps above, we can obtain the file
“brim3_simulated.csv”.

The next step exhibits the sadistically cured fraction in metastatic melanoma and it is displayed
in the plateaus in overall Kaplan-Merier (KM) curves.
Note that in the first 3 steps, Felizzi and colleagues(2021) have revealed a rigorous procedure
to apply MC Model contributes to the invention of novel cancer therapies[7]. However, the
coming steps choose to utilize PHMC model instead of comparing different parametric models.
Consequently, the following steps are introduced by Peng etc.(2012)[4].

Step 4: Estimating and Analysis Kaplan-Meier curves The data set includes 200 males,
137 females and in total of 337 patients from different countries in the research. The diagram
of the age distribution are shown below:

Figure 6.1: The diagram of patients’ age

Kaplan Meier survival curve is the most intuitive approach to analysis the trend, median and
differences between the curves. Subsequently, we will draw 3 KM cures graph related to gender,
age group and countries.

KM1:Estimating Kaplan-Meier curves respecting to gender Starting with the KM
curves 6.2 corresponding to gender, it has been observed that the three curves are closed to
each other. Referring to the hazard table，there are strong evidence that gender only effect the
mortality slightly. It should be notice that in the legend of the KM curves, SEX.F means the
patient is female while SEX.M stands for the patient is male.

Figure 6.2: KM Curve 1(gender)

MTH301 Final Year Project 23



MTH 301

KM2:Estimating Kaplan-Meier curves respecting to country If we want to examine
relations between the survival probabilities and countries, choosing 3 countries since patients
are from 19 countries. In order to help to select the object, the diagram of 19 countries are
necessary:

Figure 6.3: The diagram of patients’ country

From the diagram above, we choose three countries for the KM estimation such as Italy, USA
and Germany for the reason that the Italy group has the most subjects and United States
has the most progressive medical technology. In the figure 6.4, the legend COUNTRY.ITA,
COUNTRY.USA and COUNTRY.GER are refer to Italy, USA and Germany respectively. In
addition, the legend ”all” implies the average of the three curves. The KM curve for the variable
country is displayed:

Figure 6.4: KM Curve 2(country)

The diagram show strong evidence that patients in different countries have different survival
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rate of melanoma. Hence the country is related to the final survival rate. However, the variable
country is hard to numeric, the variable is hard to contain in the PHMC model.

KM3:Estimating Kaplan-Meier curves respecting to age group The diagram 6.1 is
close to a unimodel. Intended for getting the KM curves relating to age, we need to regroup the
patients according to the standard introduced by WHO.

20-44 45-59 60-74 75 - ∞

Young Adult Middle-Aged Adult Young Elderly the Elderly

Figure 6.5: KM Curve 3(age group)

From the curve, there are substantial distinction between the KM line for each group. People
older than 75 has the lowest survival rate and the other three are really closed to each other.
Contrary to common sense, the 60-74 years old group have the largest survival rate in the
plateau.

Step 5: Implementing the PHMC model Fitting the Brim-3 data into the semiparametric
PHMC model. The model insists of two fractions: ”Cure probability model” and ”Failure
time distribution model”. Thinking of the process as an equation, the cure probability can be
approximated by 1 − π(z) while the survival function will be S(t,X)(4.13). Consequently, the R
package smcure will be used for dataset ”brim3” and get the estimation and interpretation.
Note that the default value nboot is equal to 100, if we increase the the number of bootstrap
samplings, the standard error term for the estimation will decrease. Call:
smcure(formula = Surv(as.numeric(TIME), CNSR) ∼ AGE + SEX, cureform = ∼
AGE + SEX, data = brim3, model = ”ph”, link = ”logit”)
Cure probability model:
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Estimate Std.Error Z value Pr(>|Z|)
(Intercept) 2.31789555 0.66905151 3.46445007 0.0005313168

AGE -0.01294646 0.01128204 -1.14752832 0.2511633336
SEX -0.01821865 0.30998916 -0.05877191 0.9531337830

Failure time distribution model:

Estimate Std.Error Z value Pr(>|Z|)
AGE 0.005484636 0.004565488 1.2013254 0.2296250
SEX -0.094985191 0.133634612 -0.7107829 0.4772188

Step 6: Model Assessment In fact, the PHMC analysis procedure don’t compare the effec-
tive of dacarbazine and vemurafenib because of the file“brim3_simulated.csv”provided Felizzi
et al.(2021)[7] is not contain the corresponding variable. The drawback leads to the error. The
p-value is small also because of the variable ”COUNTRY” are highly correlated with the survival
probability.
The cure rate can be calculated by 1 − π(z) = 1 − e(2.31789555+−0.01294646+−0.01821865)

1+e(2.31789555+−0.01294646+−0.01821865) . From the two dis-
tribution model , if the patient is older, they will have lower probability to be cured and have
larger mortality.

Conclusion

In oncology, the survival analysis methods are appropriate to develop the novel cancer therapies
including survival curve with the remaining censored subjects after the experience ends (Felizzi
et al., 2021)[7]. On that occasion, a portion of patients was considered statistically cured and
finally die for other reasons which includes in the nonsusceptible group. On the opposite, the
patients will belong to the susceptible group so cancer affects the time negatively. Both par-
tition consists of the Mixture Cure Model(MC) which is more accurate than the standard
survival estimate methods. To introduce the method, we first introduce survival analysis bases
and models, including parametric, semi-parametric, and non-parametric models. Besides, max-
imum the complete likelihood functions of Mixture Cure Model need to use EM algorithm and
then introduced PHMC and AFTMC for the M-step. Felizzi et al.(2021) outline a step-by-step
MC model applying process to spread the model to further cutting-edge cancer therapies de-
velopment. Finally, by analyzing BRIM-3 trial data with the process and eventually come to a
preliminary conclusion that country and age effect the outcome obviously.

References

[1] Joseph Berkson and Robert P. Gage. Survival curve for cancer patients following treatment.
Journal of the American Statistical Association, 47(259):501–515, 1952.

MTH301 Final Year Project 26



MTH 301

[2] John W. Boag. Maximum likelihood estimates of the proportion of patients cured by cancer
therapy. Journal of the Royal Statistical Society. Series B (Methodological), 11(1):15–53,
1949.

[3] Chao Cai, Yubo Zou, Yingwei Peng, and Jiajia Zhang. smcure: An r-package for estimating
semiparametric mixture cure models. Computer Methods and Programs in Biomedicine,
108(3):1255–1260, 2012.

[4] Yingwei Peng Jiajia Zhang Chao Cai, Yubo Zou. smcure: An r-package for estimating
semiparametric mixture cure models. Computer Methods and Programs in Biomedicine,
108(3):1255–1260, 2012.

[5] Frank Emmert-Streib and Matthias Dehmer. Introduction to survival analysis in practice.
Machine Learning and Knowledge Extraction, 1(3):1013–1038, 2019.

[6] V. T. Farewell. The use of mixture models for the analysis of survival data with long-term
survivors. Biometrics, 38(4):1041–1046, 1982.

[7] Federico Felizzi, Noman Paracha, Johannes Pöhlmann, and Joshua Ray. Mixture cure
models in oncology: A tutorial and practical guidance. PharmacoEconomics - Open, 5:1–
13, 02 2021.

[8] Sy Judy P. and Taylor Jeremy M. G. Estimation in a cox proportional hazards cure model.
Biometrics, 56(1):227 – 236, 2000.

[9] John P. Klein and Melvin L. Moeschberger. Survival Analysis: Techniques for Censored
and Truncated Data. 1997.

[10] David G. Kleinbaum and Mitchel Klein. Survival analysis : a self-learning text. Statistics
for biology and health. Springer, 2012.

[11] ANTHONY Y. C. KUK and CHEN-HSIN CHEN. A mixture model combining logistic
regression with proportional hazards regression. Biometrika, 79(3):531–541, 09 1992.

[12] Guanghan Frank Liu and Jason J. Z. Liao. Analysis of time-to-event data using a flexible
mixture model under a constraint of proportional hazards. Journal of Biopharmaceutical
Statistics, 30(5):783–796, 2020. PMID: 32589509.

[13] Yingwei Peng, Keith B. G. Dear, and J. W. Denham. A generalized f mixture model for
cure rate estimation. Statistics in Medicine, 17(8):813–830, 1998.

[14] Rinku Saikia and Manash Pratim Barman. A review on accelerated failure time models.
International Journal of Statistics and Systems, 12(2):311–322, 2017.

[15] Binbing Yu Yingwei Peng. Cure Models Methods, Applications, and Implementation. 2021.

MTH301 Final Year Project 27


	Abstract
	Introduction
	Literature Review
	Introduction to Survival Analysis
	Functions
	Transformation among the functions
	Data Types for Survival Analysis

	Survival Model
	Parametric Survival Models 
	Nonparametric Survival Models 
	Semi-parametric Model

	Logistic Model

	Metholody
	Maximum Likelihood Estimation
	Likelihood Function
	Partial Likelihood Function
	Profile likelihood function

	Newton-Raphson Algorithm
	The Newton Raphson Algorithm to Maximum 1 Variable Likelihood Function

	EM Algorithm
	The Proportional Hazards Cure Model
	Mixture Cure Model


	Model Estimation
	Likelihood Construction
	Direct Maximization Method
	Applying the EM Algorithm
	E-Step
	M-Step


	Application
	Mixture Cure Models in Oncology

	Conclusion

